Sederhanakansin2(x) . ( 1 + cot2(x) ) + cos2(x) . ( 1 + tan2(x) ) Pembahasan. Menyederhanakan identitas trigonometri bertujuan untuk mengubah bentuk menjadi lebih sederhana, atau umumnya menjadi bentuk yang dapat dihitung, seandainya bertujuan mencari nilai tertentu. Perhatikan bahwa ini berlaku hanya jika cos (x)β‰ 0 dan sin (x)β‰ 0.
1. Bentuk sederhana dari 23 x 223 adalah a. 27 b. 28 c. 512 d. 212 e. 218 Jawab c. 512 Pembahasan 23 x 223 = 23 x 26 = 8 x 64 = 512 a 2. Nilai dari 3 2 b b 1 2 a b 2/3 1/2 a 1 2 4 3 adalah √ ab b. b √ a a. c. ab d. a √b e. a2b3 √ ab Jawab a. Pembahasan 3 2 a b 1 2 1 b2 a b 2/3 1/2 a 4 3 = a3/2b-1/2-1a2/3b1/2 b1/2a-4/3 3 2 4 βˆ’ + + 2 3 3 =a 1 1 1 + βˆ’ 2 2 b2 = a1/2b1/2 = 3. nilai √ ab 4βˆ’2 x =4 y 0 8 x 2 y βˆ’4 xβˆ’2 y βˆ’3 xβˆ’1 y 2 a. 2x-1y3 adalah b. 2xy3 c. Β½x-1y2 d. Β½xy-3 e. x-1y-3 Jawab d. Β½xy-3 Pembahasan 4βˆ’2 x =4 y 0 8 x 2 y βˆ’4 xβˆ’2 y βˆ’3 xβˆ’1 y 2 = 2-4x-2y323x3y-6 = 2-4 + 3 x-2 + 3y3 – 5 = 2-1xy-3 = Β½xy-3 4. Nilai dari 2-4 + 1 2βˆ’2 adalah a. 41/16 b. 2 c. 3 d. 41/8 e. 4 Jawaban a. 41/16 Pembahasan 2 + -4 1 2βˆ’2 1 1 2 1 +2 = + 4=4 16 16 = 16 5. Jika x = 32dan y= 27, maka nilai 5x1/53y1/2 Adalah a. 2/3 b. 5/2 c. 3 d. 4 e. 5 Jawab b5/2 Pembahasan x = 32, y = 27 5x-1/5 x 3y-1/3 = 532-1/5 x 333-1/3 = 525-1/5 x 333-1/3 = 5/2 x 1 = 5/2 3 6. Bentuk βˆ’1 x βˆ’y 2 xβˆ’1 + yβˆ’2 dapat disederhanakan tanpa eksponen negatif menjadi y yβˆ’x 3 a. x 2 2 y 2 βˆ’x y y +x 3 b. x 2 2 y 2 +x c. y y +x 3 x 2 2 y 2 βˆ’x y yβˆ’x 3 d. x 2 2 y 2 +x y yβˆ’x 3 e. y 2 2 x 2 +x y yβˆ’x 3 Jawab d. x 2 2 y 2 +x Pembahasan 3 βˆ’1 x βˆ’y 2 xβˆ’1 + yβˆ’2 = 7. Bentuk a. p+q pq b. pq q+ p 1 1 y βˆ’x3 βˆ’ y y βˆ’x3 x3 y x3 y yβˆ’x 3 xy 2 = = 3 x = 2 2 2 1 x y 2 y + x x2 2 y2 + x + 2 2y +x x y xy 2 1 pβˆ’1 +qβˆ’1 senilai dengan c. P+q d. pβˆ’q p+q e. pq qβˆ’p pq q+ p Jawab b. Pembahasan 1 pq = q+ p q+ p pq 1 pβˆ’1 +qβˆ’1 = 8. Jika diketahui a = 3 + √6 dan b = 3 - √6 maka a2 + b2 – 6ab adalah √6 3 - a. 3 b. 6 c. 9 d. 12 e. 30 Jawab d. 12 Pembahasan a2 + b2 – 6ab = 3 + =9+6 √6 √6 2 + 3 - √6 +6+9-6 2 – 63 + √6 √6 + 6 – 69 – 6 =12 9. Hasil kali dari 3 √ 15 b. 42 + √ 15 c. 18 + 9 √ 15 d. 42 - 8 √ 15 a. 60 - 6 √5 -2 √3 √ 80 + √ 27 adalah √ 15 e. 42 + 9 Jawab b. 42 + √ 15 Pembahasan √ 5 - 2 √ 3 √ 80 + √ 27 = 3 √ 5 - 2 √ 3 4 √ 5 + 3 √ 5 = 60 – 8 √ 15 + 9 √ 15 - 18 = 42 + √ 15 √ 243 - 3 √ 3 + 2 √ 48 = 10. a. 15 √ 3 b. 14 √ 3 c. 12 √ 3 d. 8 √ 3 e. 7 √ 3 Jawab b. 14 √ 3 3 Pembahasan √ 243 11. √ 3 + 2 √ 48 = 9 √ 3 - 3 √ 3 + 8 √ 3 = 14 √ 3 Bentuk dari √ 21+8 √ 3 dapat disederhanakan menjadi -3 a. √ 14 + √7 b. √ 12 + √6 c. 3 + d. 16 + e. 4 + √6 √5 √5 √5 Jawab e. 4 + Pembahasan √ 21+8 √3 = √ 21+2 √ 80 = √ 16+5+2 √ = √ 16 + √ 5 = 4 + √5 12. Nilai dari √5 a. 3 √ 15 b. d. -3 e. 3 √ 125 3 √3 +6 √5 √5 adalah - 132 - 44 √5 c. -3 √ 12 - √5 √5 + 44 + 132 + 44 Jawab c. -3 √5 + 44 3 √3 Pembahasan √ 12 - √ 125 +6 √ 3 - 5 √ 5 3 √ 3 + 6 √ 5 = 2 √ 3 3 √ 3 + 6 √ 5 - 5 √ 5 3 √ 3 = + 12. √ 15 - 15. √ 15 - = 18 - 3 √ 15 - 150 = -3 √ 15 - 132 = -3 √ 15 + 44 = 2 +6 √5 13. 4 Bentuk √8βˆ’2 √15 senilai dengan √5 a. 2 √5 b. √3 + √5 c. Β½ √3 +2 + √3 √5 +2 √ 8+2 √15 d. 4 √ 8+2 √15 e. Jawab a. 2 √3 Pembahasan 4 √8βˆ’2 √15 = 4 5+ 3 4 √ 5+ √ 3 .√ √ = =2 √ 5+ 2 √ 3 5βˆ’3 √√ 5βˆ’ √3 √ 5+√3 = 14. 4 √√ 5βˆ’ √3 √ 2 , nilai dari x2 – 13/4 . x2 - 11/4 adalah Untuk x = a. -4 b. -2 c. 1 d. 4 e. 16 Jawab c. 1 Pembahasan √2 x= β†’ x2 – 13/4 . x2 - 11/4 3 4 = [ √ 2 βˆ’1 ] . [ √2 βˆ’1 ] = [2 βˆ’1] .[ 2 βˆ’1] 2 =1 1 2 3 4 2 1 2 1 4 1 4 15. Diketahui x + x-1 = 7. Nilai dari √ x+ 1 √x adalah √5 a. b. 3 √ 11 c. d. 5 e. 9 Jawab b. 3 Pembahasan Misal √ x+ 1 √x = c kuadratkan kedua ruasnya 1 2 2 =c √ x+ √x 1 x = c2 x+2+ x + x-1 = 7, maka c2 – 2 = 7 c2 = 9 16. β†’ c=3 11 490 Nilai dari log 55 + log 297 - 2log 27 a. Log 297 23 b. Log 297 11 c. Log 297 3 11 d. Log e. 11 27 3 Jawab d. log 11 Pembahasan 7 9 - log 2 adalah 11 490 log 55 + log 297 - 2log = log a 17. 7 9 - log 2 11 490 98 . 55 297 297 3 =log =log 2 98 11 7 .2 81 9 1 1 1 log . b log 2 . c log 3 b c a = a. – 6 b. 6 c. – 16 d. 16 βˆ’ e. 1 6 Jawab a. – 6 Pembahasan a 1 1 1 log . b log 2 . c log 3 b c a = -1. alog b. -2. blog c. -3. clog a =-6 18. Nilai x yang memenuhi persamaan 2log adalah a. 5 b. 4 c. 3 d. 2 e. 1 Jawab d. 2 Pembahasan 2 log √6 - Β½. 2log 3 = 4log x 2 log 61/2 – Β½. 2 log 21/2 = 4log x Β½ = 4log x 2 log 3 = 4log x √6 - Β½. 2log 3 = 4log x x=2 19. Jika a = 6log 5 dan b = 5log 4, maka 4log 0,24 = a. aβˆ’2 ab b. a+2 ab c. 2 a+ 1 ab d. 1βˆ’2 a ab e. 2 a+ 1 2 ab 1βˆ’2 a ab Jawab d. Pembahasan 6 log 5 = a 5 log 4 = b β‡’ 5 5 4 log 0,24 = 5 log 6 = 1 a log 0,24 log 4 6 25 5 = log 4 5 log 5 5 log 6βˆ’ log5 5 = log 4 20. 2 = 1 βˆ’2 a b = 1βˆ’2 a ab Diketahui log 2 = p, log 3 = q, dan log 5 = r. Harga log dapat dinyatakan dalam bentuk p, q, dan r yaitu a. p + q + r b. p + 2q + 3r c. 2p + 3q + 3r d. 2p + q + 3r e. 3p + q + 2r Jawab d. 2p + q + 3r Pembahasan Log 2 = p. log 3 = q, log 5 = r Log = log = log 22 + log 3 + log 53 = 2p + q + 3r SOAL ESSAY BENTUK PANGKAT, BENTUK AKAR, DAN LOGARITMA 3 βˆ’ 6 2 1. Tentukan nilai dari 7x √ y5 5 4 βˆ’ x βˆ’6 y x Untuk x = 4 dan y = 27. Pembahasan 3 βˆ’ 6 2 7x √ y5 5 4 1 βˆ’ 3 x βˆ’6 y x 1 2 βˆ’ = 5 1 2 3 5 1 2 2 x βˆ’ 6 √3 y = 5 3 7 √ x . √ y 2 5 2 = √ 4 βˆ’ 3 6 √ 27 5 = 5 6 5 7x y 3 2 7 x . y . x2 βˆ’2 7 . 2 . √3 √ 2 5 βˆ’ 6 3 √3 = 4 √ 2βˆ’2 126 √3 4 √ 2+2 x 4 2βˆ’2 4 √ 2+2 √ = 504 √ 6+252 √3 = 32βˆ’4 504 √ 6+252 √3 = 28 1 3 x 4 βˆ’6 y βˆ’ 1 3 βˆ’2 √6 = 18 +9 √3 =9 √3 2 √ 2 + 1 √ 8 x βˆ’4 x+3=321 2 2. Penyelesaian dari persamaan xβˆ’1 adalah p dan q dengan p β‰₯ q. Tentukan nilai p + 6q. Pembahasan √ 8 x βˆ’4 x+3=321 2 xβˆ’1 √ 23 1 x2 βˆ’4 x +3 = 5 xβˆ’1 2 √ 23 x βˆ’12 x +9= 2 1 2 5 xβˆ’5 2 3 x 2 βˆ’12 x+9 2 =2 βˆ’5 x+5 2 3 x βˆ’12 x +9 =βˆ’5 x+5 2 3x2 – 12x + 9 = - 10x + 10 3x2 – 2x – 1 = 0 3x + 1x – 1 = 0 1 1 X = - 3 atau x = 1, maka p = 1 dan q = - 3 Nilai p + 6q = 1 + 6. 1 3 βˆ’ =1–2=-1 3. Rasionalkan bentuk penyebut bentuk Pembahasan √7+ √5+ √3 √7+ √5βˆ’βˆš 3 √7+ √5+ √3 . √ 7+√ 5+√ 3 √7+ √5βˆ’βˆš 3 √ 7+√ 5+√ 3 2 √7+ √5+ √3 √ 7+√ 5 2 βˆ’3 √7+ √5+ √3 √7+ √5βˆ’βˆš 3 2 √7+ √5+ √3 9βˆ’2 √ 35 . 9+2 √36 9βˆ’2 √ 35 2 √ 7+ √5+ √ 3 . 9βˆ’2 √ 35 βˆ’59 4. Tentukan nilai x yang memenuhi persamaan √8 Β½ log 8 + log 32 – 2log Β½ = 2log x. Pembahasan Β½ log 8 + Β½log 32 – 2log -3 + -5 - √8 = 2log x 3 2 = 2log x 19 βˆ’ 2 = 2log x βˆ’ 19 2 x= 2 x= 1 512 √2 5. Diketahui 2log 2x + 3.25log 8 = 3. Tentukan nilai x yang memenuhi. Pembahasan 2 log 2x + 3.25log 8 = 3 3 2 5 log 2. 2log 2x + 3 = 3 .5 log 2x + 3 = 2 2x + 3 = 25 2x = 22 x = 11
Kelimakelompok tersebut terdiri dari tiga belas jenis bentuk molekul yang berbeda, baik bentuk molekul yang memiliki PEB maupun tidak memiliki PEB pada atom pusatnya. Bentuk molekul divisualisasikan secara 3D oleh aplikasi ARMOR dengan tiga pilihan tampilan, yaitu 1) bentuk molekul dasar; 2) sudut dan PEB; 3) struktur bangun ruang.
Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARBilangan Berpangkat Bilangan BulatBilangan Berpangkat Bilangan BulatBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0205Nyatakanlah 5a^-2 b^3 c^-4/10a^-6 b^8 c ke dala...0105Bentuk sederhana dari 2^3 x 2^2^3 adalah .... A. 2^7 B....0316Bentuk sederhana dari 3 a^-2 b c^-3/24 a^5 b^...Teks videodi sini ada pertanyaan bentuk sederhana dari 2 pangkat 3 per 2 pangkat negatif 5 kita harus ingat dalam bilangan berpangkat dan di sini karena per artinya pembagian dalam pembagian bilangan berpangkat apabila kita memiliki a pangkat pangkat n dengan syarat bilangan pokoknya adalah sama maka pangkatnya di sini dapat kita kurangkan menjadi a pangkat n dikurangi dengan n sehingga dari bentuk yang kita miliki yaitu 2 pangkat 3 per 2 pangkat negatif 5 karena bilangan pokoknya Sudah sama yaitu 2 maka pangkatnya dapat kita akan menjadi 2 pangkat 3 dikurangi dengan negatif 5 sehinggaPangkat 3 ditambah dengan 5 hasilnya adalah 2 pangkat 8 pada option jawaban terdapat pada option yang a. Oke sampai bertemu pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Karenabasis pada ruas kiri adalah 3, maka kita ubah 81 menjadi 3 4. Jadi, himpunan penyelesaian dari persamaan eksponen tersebut adalah x = 2. Mudah ya, Squad? Kalau gitu, kita lanjut ke soal berikutnya. Soal nomor 2 merupakan bentuk persamaan eksponen tidak sederhana karena kalau kita uraikan akan membentuk persamaan kuadrat.
RARafi A25 November 2021 0502Pertanyaanbentuk sederhana dari 3Γ’Λ†Ε‘2 + 2Γ’Λ†Ε‘3 3Γ’Λ†Ε‘2 - 2Γ’Λ†Ε‘3 adalah C. 12Γ’Λ†Ε‘2 D. 30 E. 6 701Jawaban terverifikasiJJIngat bahwa a+ba-b = a²-b² Jadi, 3Γ’Λ†Ε‘2 + 2Γ’Λ†Ε‘3 3Γ’Λ†Ε‘2 - 2Γ’Λ†Ε‘3 = 3Γ’Λ†Ε‘2² - 2Γ’Λ†Ε‘3² = 18 - 12 = 6 .... EYuk, beri rating untuk berterima kasih pada penjawab soal!Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!Mau pemahaman lebih dalam untuk soal ini?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!
Jikahasil kali dari keempat pecahan ini diberikan dalam sampai yang bentuk yang paling sederhana, carilah nilai dari penyebutnya. Dengan mengganti digit ke-1 dari bilangan 2 digit dengan bentuk *3, terdapat enam buah bilangan prima dari sembilan bilangan yang ada: 13, 23, 43, 53, 73, dan 83. kita dapat menampilkan semua bilangan
Hai adik-adik kelas 4 SD, berikut ini Osnipa akan membahas materi pecahan. Kali ini, pembahasan akan fokus kepada menyederhanakan pecahan. Semoga bermanfaat. Menyederhanakan pecahan artinya mengubah pecahan menjadi pecahan senilai yang paling sederhana. Caranya dengan membagi pembilang dan penyebut pecahan dengan bilangan yang sama hingga keduanya tidak dapat di bagi lagi. Contoh Tentukan pecahan paling sederhana dari 2/4! Penyelesaian2/4 = 2 2/4 2 = 1/2 pembilang dan penyebut dibagi 2Jadi, bentuk pecahan paling sederhana dari 2/4 adalah 1/2 Soal Latihan Menyederhanakan Pecahan dan Pembahasan Supaya lebih paham lagi mari kita berlatih soal menyederhanakan pecahan ya. Isilah titik-titik dengan bentuk pecahan paling sederhana!1. 18/24 = β‹― 2. 20/45 = β‹―3. 28/36 = β‹―4. 6/64 = ….5. 15/35 = β‹― Pembahasan 1. 18/24 = β‹―Pembahasan18/24 = 182/242 = 9/129/12 = 93/123 = 3/4Jadi bentuk paling sederhana dari 18/24 adalah 3/4 2. 20/45 = β‹―Pembahasan20/25 = 205/255 = 4/5Jadi bentuk paling sederhana dari 20/45 adalah 4/5 3. 28/36 = β‹―Pembahasan28/36 = 282/362 = 14/1814/18 = 142/182 = 7/9jadi bentuk paling sederhana dari 28/36 adalah 7/9 4. 6/64 = ….Pembahasan6/64 = 62/642 = 3/32jadi bentuk paling sederhana dari 6/64 adalah 3/32 5. 15/35 = β‹―Pembahasan15/35 = 155/355 = 3/7jadi bentuk paling sederhana dari 15/35 adalah 3/7 Demikian pembahasan mengenai Menyederhanakan Pecahan Kelas 4 SD. Semoga bermanfaat. Pengunjung 9,077 Ubah25 persen menjadi bentuk pecahan. Pada langkah pertama, bagi 25% dengan 100: 25/100. Sekarang kita akan mengurangi pecahan dengan membaginya dengan GFC dari angka atas dan bawah. GFC = 5. 25 dibagi 5/100 dibagi 5 = 5/20. Pada pengurangan lebih lanjut: 5/100 = 1/4. 25/100 adalah pecahan dari 25%. 25% = 1/4. INMahasiswa/Alumni Universitas Brawijaya04 Januari 2023 0258Jawaban yang benar adalah B. Pembahasan Sifat bilangan eksponen a^b Γƒβ€” a^c = a^b + c a^b a^c = a^b Γ’β‚¬β€œ c a^b^c = a^b Γ‚ c Penyelesaian 32^½ Γƒβ€” 64^Γ’β€¦β€œ/16^Γ’β‚¬β€œΓ’β€¦Ε“ = 2ҁ¡^½ Γƒβ€” 2ҁ¢^Γ’β€¦β€œ/2ҁ´^Γ’β‚¬β€œΓ’β€¦Ε“ = 2^5 Γ‚ ½ Γƒβ€” 2^6 Γ‚ Γ’β€¦β€œ/2^4 Γ‚ Γ’β‚¬β€œΓ’β€¦Ε“ = 2^5/2 Γƒβ€” 2²/2^Γ’β‚¬β€œ3 Γ‚ 4/8 = 2^5/2 + 2/2^Γ’β‚¬β€œ3 Γ‚ 1/2 = 2^5/2 + 4/2/2^Γ’β‚¬β€œ3/2 = 2^9/2/2^Γ’β‚¬β€œ3/2 = 2^9/2 Γ’β‚¬β€œ Γ’β‚¬β€œ3/2 = 2^9/2 + 3/2 = 2^12/2 = 2ҁ¢ Jadi, bentuk sederhana dari eksponen diatas adalah 2ҁ¢. Oleh karena itu, jawaban yang tepat adalah akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Sepertiyang ditanyakan teman kita di KPCI beberapa waktu lalu tentang cara membuat watermark dengan CorelDRAW, contoh gambar seperti dibawah ini: Suatu misal kita sudah membuat desain sebelumnya yang akan diberi watermark, caranya sebagai berikut: 1. Ketik tulisan dengan Text too l di Toolbox, yang jelas kita ketik dengan menyesuaikan merek
MatematikaBILANGAN Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARBilangan Berpangkat Pecahan, Negatif, dan NolBilangan Berpangkat Pecahan, Negatif, dan NolBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0105Hasil dari 4^-1 + 4^-2 adalah A. 8/16 B. 6/16 C. 5/16 D. ...Hasil dari 4^-1 + 4^-2 adalah A. 8/16 B. 6/16 C. 5/16 D. ...0315Hasil perkalian dari 4a^-2 x 2a^3 adalah ....Hasil perkalian dari 4a^-2 x 2a^3 adalah ....0109-1/16^2/3=...-1/16^2/3=...Teks videodisini kita punya pertanyaan untuk menghitung hasil dari 64 ^ 2/3 64 akan kita jadikan bilangan berpangkat 64 adalah 2 kali 32 dua kali 16 kita gunakan pohon faktor ya 16 / 2 yaitu 82 ^ X 42 * 2 jadi 64 adalah= 2 ^ dengan 6 kita jadikan 2 pangkat 62 pangkat 6 kemudian dipangkatkan 2/3 jika kita memiliki a pangkat M dipangkatkan dengan n maka akan menjadi a pangkat m * n pangkat nya dikalikan sehingga 2 pangkat 6 dikali pangkat nya 2/3 kita coret ini jadi satu ini jadi 2 sehingga menjadi 2 ^ 42 ^ 4 adalah 2 * 2 * 2 * 2 yaitu 16 pilihannya B sampai jumpa di pertanyaan berikutnya
Cobasobat perhatikan perkalian angka di bawah ini, 16 x 0,125 Cukup lama tidak kira-kira sobat mengerjakan soal di atas? Bagi kebanyakan kalian mungkin akan cukup lama mengalikan 16 dengan bilangan desimal 0,125. Sebenarnya dengan sedikit mengubah angka desimal ke bentuk pecahan biasa sobat bisa dengan mudah mengerjakan soal di atas. Lakukan perubahan sebagai berikut:, [] Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARBilangan Berpangkat Pecahan, Negatif, dan NolBilangan Berpangkat Pecahan, Negatif, dan NolBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0105Hasil dari 4^-1 + 4^-2 adalah A. 8/16 B. 6/16 C. 5/16 D. ...0315Hasil perkalian dari 4a^-2 x 2a^3 adalah ....Teks videodisini kita mempunyai soal sebagai berikut untuk mengerjakan soal tersebut kita gunakan konsep dari operasi hitung pada bilangan berpangkat perkalian bilangan berpangkat a pangkat n x = a pangkat M maka c = a pangkat n + m kemudian pembagian pangkat n ^ m maka ini = a pangkat n Min m kemudian Jika a pangkat n dipangkatkan n maka ini = a pangkat n * n pada bilangan berpangkat negatif pangkat min m akan sama dengan 1 per a pangkat n akan menyederhanakan bentuk dari soal tersebut 32 pangkat setengah carikan dengan 64 pangkat sepertiganah, kemudian dibagi dengan 16 pangkat min 3 per 8 x = 32 itu adalah 2 ^ 52 ^ 5 B ^ kan dengan setengah kita kalikan dengan 64 itu adalah 2 ^ 65 * 2 ^ 6 dipangkatkan 3 kemudian kita pergi dengan 16 itu adalah 2 pangkat 4 pangkat 2 pangkat 4 pangkat min 3 per 8 = 2 pangkat 5 per 2 dikalikan dengan ini 2 pangkat 2 karena 6 / 3 kan 2 kemudian dibagi dengan 2 pangkat 4 dikalikan dengan min 3 per 85 x 2 pangkat min 12 per 8Nah karena bilangan pokoknya aku sama pokoknya tuh dua contoh perkalian pangkat nya kita jumlahkan Nah kalau pembagian pangkatnya kita kurangi = 2 pangkat min 5 per 2 ditambah dengan 2 itu adalah 4 per 2 kemudian dikurangi dengan MIN 12 per 8 Nah kita jadikan 3 per 2 dalam kurung min 3 per 2 Nah kita peroleh jangan = 2 ^ x menjadi 12 per 25 + 4 + 99 + 3 are negatif ketemu negatif 12 per 2 per 12 per 2 adalah 2 ^ 63jawabannya adalah 2 ^ 6 sampai jumpa soal yang selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Ekspresionismedalam arsitektur : 1. Ekspresionis berarti merancang sesuai hasrat dan ekspresi arsitek. 2. Bagaimana ide/maksud arsitek bisa memberi kesan kepada orang yang melihat. 3. Segala bentuk/wujud yang dihasilkan adalah karakter arsitek. 4. Selalu berkaitan dengan fungsi dan bentuk.

Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARBilangan Berpangkat Pecahan, Negatif, dan NolBentuk sederhana dari 3663/4 x 10^-3/75^-2 x 64^1/6^-1 adalah... a. 2^7/2/3^5/2 x 5 b. 2^5/2/3^7/2 x 5 c. 3^5/2/2^7/2 x 5 d. 3^7/2/2^5/2 x 5Bilangan Berpangkat Pecahan, Negatif, dan NolBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0105Hasil dari 4^-1 + 4^-2 adalah A. 8/16 B. 6/16 C. 5/16 D. ...0315Hasil perkalian dari 4a^-2 x 2a^3 adalah ....Teks videodi sini ada pertanyaan bentuk sederhana dari 36 ^ 3/4 dikalikan 10 pangkat negatif 3 / 75 pangkat negatif 2 dikalikan 64 pangkat 16 dipangkatkan negatif 1 B pangkat negatif 1 artinya 36 dipangkatkan negatif 3/4 karena kita sudah pangkatkan dengan negatif 1 artinya pangkatnya kita kalikan saja Kemudian dikalikan dengan 10 pangkat negatif 3 dipangkatkan negatif 1 maka 10 pangkat 3 dibagi dengan 75 kuadrat dikalikan dengan 64 dipangkatkan negatif 1 per 6 kemudian disini kita ingat bahwa a pangkat negatif n itu dapat kita Tuliskan menjadi 1 per 2 dipangkatkan dengan artinya untuk 36 dipangkatkan negatif 3/4 dan 64 dipangkatkan negatif 1/6 Kita ubah agar pangkatnya menjadi positif sehingga yang semula tempatnya berada pada pembilang agar dia pangkatnya menjadi positif Kita pindah penyebut dan yang semula 64 pangkat negatif 1 per 6 berada pada penyebut agar pangkatnya menjadi positif Kita pindah pada pembilangnya maka disini dapat kita Tuliskan 10 ^ 3 dikalikan dengan 64 ^ kan 1/6 dengan 75 kuadrat dikali kan dengan 36 dipangkatkan 3 atau 4 disini pangkatnya sudah positif semua 10 ^ 3 itu dapat kita Tuliskan menjadi 2 dikalikan 5 dipangkatkan 3 kemudian dikalikan dengan 64 itu dapat kita Tuliskan 2 pangkat 6 kemudian dipangkatkan dengan 1 per 6 dibagi dengan 75 kuadrat itu dapat kita Tuliskan menjadi 5 dikalikan 5 dikalikan 3 dipangkatkan dengan 2 kemudian dikalikan dengan 36 adalah 6 kuadrat kemudian dipangkatkan dengan 3 per 4 Nah di sini pangkatnya ada yang dapat kita Sederhanakan di sini namanya kita Sederhanakan dengan 6 pangkat 2 di sini juga Sederhanakan dengan pangkat empat nya disini menjadi 2 sehingga dapat kita Tuliskan 2 * 5 dipangkatkan 3 itu dapat kita Tuliskan 2 ^ 3 * 5 ^ 3 dikalikan dengan 2 pangkat 1 dibagi dengan 5 ^ 2 * 5 ^ 2 * 3 ^ 2 bagian dikalikan dengan 6 pangkat 3 per 2 kita jabarkan juga untuk yang 6 ^ 3/2 disini kita Satukan saja 2 pangkat 3 kali kan 2 pangkat 1 kali 5 pangkat 3 kemudian dibagi dengan 5 kuadrat kali 5 kuadrat kali 3 kuadrat kali kan 6 ^ 3/2 itu dapat kita Tuliskan menjadi dua kali kan 3 dipangkatkan 3 per 2 Kemudian kita Tuliskan kembali disini bahwa 2 pangkat 3 dikalikan 2 pangkat 1 kali 5 pangkat 3 dibagi 5 kuadrat x 5 kuadrat x 3 kuadrat dikalikan dengan 2 pangkat 3 per 2 dikalikan dengan 3 pangkat 3 per 2 kemudian kita harus ingat perkalian bilangan berpangkat apabila bilangan tersebut sama maka pangkatnya kita jumlahkan contohnya adalah seperti ini c. ^ a dikalikan dengan c ^ b maka karena bilangan yang sama yaitu C maka pangkatnya kita jadi c dipangkatkan a ditambah dengan b. Apabila pembagian bilang Apabila bilangan tersebut sama maka pangkatnya kita kurangkan maka di sini contohnya adalah C ^ A dibagi dengan c. ^ b artinya c dipangkatkan a dikurangi dengan B nah disini konsep-konsepnya kita harus ingat ini maka disini kita satu yang bilangannya sama maka 2 ^ 3 dikalikan dengan 2 pangkat 1 di sini kan pada penyebutnya terdapat 2 ^ 3/2 artinya dia akan berada pada penyebut kita pindahkan agar menjadi pembilang maka pangkatnya menjadi negatif sehingga kita kalikan dengan 2 pangkat negatif 3 per 2 konsepnya seperti pada pembagian ini C ^ A dibagi c ^ b = c ^ a min b maka 2 ^ 3/2 pindah ke atas 2 pangkat min 3 per 2 kemudian kita bagi dengan 5 kuadrat dikali 5 kuadrat dikali kan pada tadi ada 5 ^ 3 kita ubah ke bawah maka menjadi 5 pangkat negatif 3 kemudian dikalikan dengan 3 kuadrat dikali dengan 3 pangkat 3 per 2 artinya disini terdapat c ^ a dikalikan c ^ b maka pangkatnya dijumlahkan menjadi c ^ a + b = 3 dikalikan 2 pangkat 1 Kali 2 pangkat negatif 3 per 2 maka pangkatnya kita jumlahkan yaitu 2 ^ 3 + 1 ditambah dengan negatif 3 per 2 kemudian dibagi dengan 5 ^ 2 + 2 + dengan 3 dikalikan dengan 3 ^ 2 + dengan 3 per 2 maka kita dapatkan 2 pangkat 5 per 2 dibagi dengan 5 pangkat 1 dikalikan dengan 3 pangkat 7 per 2 atau dapat kita Tuliskan menjadi 2 pangkat 5 per 2 dibagi dengan 3 pangkat 7 per 2 dikalikan dengan 5 disini bentuk sederhananya pada option jawaban yang sesuai dengan hasil yang kita dapatkan yaitu 2 pangkat 5 per 2 per 3 pangkat 7 per 2 x x yaitu terdapat pada option yang B Oke sampai bertemu pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
4 Jika x = 25 dan y = 64, tentukan nilai dari x y y x βˆ’ β‹… βˆ’ 3 2 2 3 1 3 1 2 5. Tentukan bentuk sederhana dari: a. 16 4 4 3 5 b. 1 5 5 25 1 625 0 04 4 4 4 Γ— Γ— Γ— , Contoh Soal 2.8 Sederhanakanlah penyebut dari bentuk pecahan berikut. a.
MFAsumsikan yang ditanya adalah bentuk sederhana dari 642/3  amn/k = amn/k 642/3 = 262/3 = 26Γƒβ€”2/3 = 212/3 = 24  Jadi, bentuk sederhana dari 642/3  adalagh yang ditanya adalah bentuk sederhana dari 642/3 amn/k = amn/k642/3 = 262/3 = 26Γƒβ€”2/3 = 212/3 = 24 Jadi, bentuk sederhana dari 642/3 adalagh beri rating untuk berterima kasih pada penjawab soal!Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
.
  • y6eegw64mc.pages.dev/585
  • y6eegw64mc.pages.dev/922
  • y6eegw64mc.pages.dev/224
  • y6eegw64mc.pages.dev/854
  • y6eegw64mc.pages.dev/67
  • y6eegw64mc.pages.dev/132
  • y6eegw64mc.pages.dev/439
  • y6eegw64mc.pages.dev/180
  • y6eegw64mc.pages.dev/341
  • y6eegw64mc.pages.dev/565
  • y6eegw64mc.pages.dev/625
  • y6eegw64mc.pages.dev/418
  • y6eegw64mc.pages.dev/317
  • y6eegw64mc.pages.dev/372
  • y6eegw64mc.pages.dev/469
  • bentuk sederhana dari 64 2 3